
分数除法教案模板集合7篇
作为一位杰出的老师,常常要写一份优秀的教案,教案是教学活动的总的组织纲领和行动方案。我们应该怎么写教案呢?下面是小编精心整理的分数除法教案7篇,欢迎阅读,希望大家能够喜欢。
分数除法教案 篇1
教学目标
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具
投影仪。
教学过程
一、导入
1.笔算下面各题。
24÷4+16×5-37 46+50×[(900-90)÷9]
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的式子里,通常把小数化成分数进行计算。
三、课堂作业新设计
1.填空。
四、思维训练参考答案
思维训练
1.D 2.略
教材习题
教材第33页做一做
板书设计
分数四则混合运算
运算顺序
(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
分数除法教案 篇2
练习目标:
1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;
2运用所学的分数除法的知识,解决相应的实际问题.
练习过程:
一、基础知识练习:
1、计算:
⑴2/1328/943/1035/11522/232
⑵3/10223/242617/21518/9713/154
(学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)
2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?
引导学生小结:除以一个不等于0的数,等于H这个数的倒数.
二深入练习
1、计算下面各题,比较它们的计算方法.
5/6+2/35/6-2/35/62/35/62/3
2、
(让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)
根据学生的回答,教师作如下板书:
一个数除以小于1的数,商大于被除数;
一个数除以1,商等于被除数;
一个数除以大于1的数,商小于被除数。
三、解决问题:
练习八第7至8题。
第7题学生独立解答。
第8题学生解答时提示学生需要先统一单位。
小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。
四、作业练习:
1、33页第5、9题。
2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?
五、教学反思:
分数除法教案 篇3
教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0。3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据: ,写出 ,
(二)教学分数除以整数的计算法则
1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.
(3)教师板书整理.
(米)
2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?
也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:
把 米铁丝平均分成6段,就是求 米的 是多少,列式是:
3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.
三、巩固练习
(一)计算下面各题.
学生独立完成,教师巡视,进行个别辅导.
(二)求未知数
1. 2.
(三)判断.
1.分数除法的意义与整数除法的意义相同.( )
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )
3. ( )
4. ( )
5. ( )
(四)解答下面各题.
1.把 平均分成4份,每份是多少?
2.什么数乘以6等于 ?
3.一个正方形的周长是 米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
(一)计算下面各题.
(二)解下列方程.
六、板书设计
分数除法
分数除法教案 篇4
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
分数除法教案 篇5
教学目的
1理解分数除法的意义,掌握分数除法的计算方法。
2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影
板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动
一、复习导入新课为迁移做准备
明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果
二、新课学习分数除法的计算方法
学习分数除法的计算方法板书 激发兴趣 汇报 板书
板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米
4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314
5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义
讨论方法
选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外
三、练习巩固分数除法的计算法则投影
投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算
分数除法教案 篇6
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的.知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案 篇7
教学目标:
使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。
教学重点:
整数除以分数的计算方法的推导。
教学难点:
理解“÷”转化为“×”的转化过程。
教学过程:
一、复习
1、说一说÷18的意义。
2、一辆汔车2小时行驶90千米,1小时行驶多少千米?
(1)口述算式和结果。
(2)板书:数量关系:速度=路程×时间
二、新授
今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?
板书课题:一个数除以分数
(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?
教师板书:18÷ (出示线段图)
(2)推导18÷的计算方法。
引导学生分两步进行计算
第一部分:求小时行多少千米。
提问
1)、小时里面有几个小时?
2)、2个小时行驶多少千米?
3)、1个小时行驶多少千米?即小时行驶多少千米?
明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。
提问
1)、1小时里面有几个小时?
2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?
明确
1) 为1小时5个小时,所以,要算18××5,也就是18×。
2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。
根据上面的推想,板书:18÷=18×,=45千米
答汔车1小时行驶45千米。
强调
1)18÷不便于直接除,把它转化乘法。
2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。
3)是的倒数,即的倒数是。
2、小结:引导学生归纳整数除以分数的计算方法。
板书:整数除以分数可以转化为乘以这个数的倒数。
三、巩固练习
1、在( )里填上适当的分数,使等式成立。
15÷=15×( )10÷ =10×( )
8÷=8×( ) ÷9=×( )
2、列式计算。
(1)一堆煤,每次用去 ,多少次才能用完?
(2)王晶小时做15朵花,1小时做多少朵花?
3、教科书第29页的“做一做”
四、作业 练习八第1——4题。